National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Basic Mechanism of Fatigue and Combined Fatigue/Creep Damage of Ni-based Superalloys MAR-M 247 and IN 713LC
Horník, Vít ; Kohout, Jan (referee) ; Pantělejev, Libor (referee) ; Kunz, Ludvík (advisor)
The thesis is focused on clarifying fatigue damage mechanisms and fatigue-creep damage mechanisms of MAR-M 247 and IN 713LC polycrystalline Ni-based superalloys. This thesis begins with basic information about nickel-based superalloys and their microstructure, followed by a description of fatigue and creep mechanisms and their mutual interaction. The next part contains experimentally obtained results describing the behavior of MAR-M 247 and IN 713LC superalloys under various sets of conditions. Three testing temperatures - 800, 900 and 950 °C were used for the measurement of fatigue properties under symmetrical loading cycle, because in the temperature range 800 – 950 °C, the mechanism of fatigue crack propagation of both superalloys should change from the originally crystallographic at "lower" temperatures (800 °C) to non-crystallographic at "higher" temperatures (950 °C). In addition the effect of processing technology on fatigue properties was studied on the superalloy IN 713LC. High-frequency cyclic loading (about 120 Hz) with high mean stress at elevated temperatures was applied to induce fatigue-creep interaction. The combined fatigue-creep loading was performed on the IN 713LC superalloy at 800 °C and on the MAR-M 247 superalloy at 900 °C.
Design of a suitable shape of test bars used for HCF (high cycle fatigue) and LCF (low cycle fatigue) and elimination of internal defects for reduction of their influence
Hemala, Robert ; Šustek, Petr (referee) ; Ňuksa, Petr (advisor)
The topic of this thesis is the formation of microporosity in cast test bars of nickel-base superalloy Inconel 713LC during solidification. The theoretical part consists of nickel alloys, their macrostructure, the method of casting and crystallization of nickel-based superalloys. The second part is devoted to the design of casting conditions, the production of shell molds, the size and shape of grains, evaluation of microporosity by various available methods, comparing the influence of grain size and the proportion of microporosity on the resulting values of the mechanical tests. Experiments were carried out in cooperation with PBS Velká Bíteš and ÚST foundry department.
Optimalisation of casting and solidification behaviour axial turbo wheels to achieve fine-grained structure in the castings
Matoušek, Roman ; Ňuksa, Petr (referee) ; Roučka, Jaromír (advisor)
The aim of this thesis is to investigate the influence of the structure of castings from the nickel superalloy Inconel 713 LC using rotation and cycling by casting table. The aim is to achieve a fine-grained structure and the best mechanical properties through varying the oscillation parameters during casting crystallization. Six castings of axial turbine wheel were initially casted for the purpose of this thesis. After evaluating their macrostructure, microstructure and mechanical properties, four additional axial turbine wheels were casted in order to validate the results.
Basic Mechanism of Fatigue and Combined Fatigue/Creep Damage of Ni-based Superalloys MAR-M 247 and IN 713LC
Horník, Vít ; Kohout, Jan (referee) ; Pantělejev, Libor (referee) ; Kunz, Ludvík (advisor)
The thesis is focused on clarifying fatigue damage mechanisms and fatigue-creep damage mechanisms of MAR-M 247 and IN 713LC polycrystalline Ni-based superalloys. This thesis begins with basic information about nickel-based superalloys and their microstructure, followed by a description of fatigue and creep mechanisms and their mutual interaction. The next part contains experimentally obtained results describing the behavior of MAR-M 247 and IN 713LC superalloys under various sets of conditions. Three testing temperatures - 800, 900 and 950 °C were used for the measurement of fatigue properties under symmetrical loading cycle, because in the temperature range 800 – 950 °C, the mechanism of fatigue crack propagation of both superalloys should change from the originally crystallographic at "lower" temperatures (800 °C) to non-crystallographic at "higher" temperatures (950 °C). In addition the effect of processing technology on fatigue properties was studied on the superalloy IN 713LC. High-frequency cyclic loading (about 120 Hz) with high mean stress at elevated temperatures was applied to induce fatigue-creep interaction. The combined fatigue-creep loading was performed on the IN 713LC superalloy at 800 °C and on the MAR-M 247 superalloy at 900 °C.
Interaction of Creep and High Cycle Fatigue of IN 713LC Superalloy
Horník, V. ; Šmíd, Miroslav ; Hutař, Pavel ; Kunz, Ludvík ; Hrbáček, K.
The study deals with the interaction of creep and high cycle fatigue of cast polycrystalline nickel-based superalloy IN 713LC at high temperatures. Previous works indicated that creep lifetime of superalloy structures was un-affected or even slightly increased in the cases with superimposed vibrations. The reason for this behaviour was not well described up to now. Therefore, set of fatigue tests was conducted at high mean stresses level to observe this phenomenon. The mean stress was kept constant while the stress amplitudes were selected in order to measure wide range of conditions from pure creep to pure fatigue. Fractographic analysis by scanning electron microscopy (SEM) was done with the aim to identify governing damage mechanisms for particular test conditions as a preliminary evaluation of conducted tests.
Optimalisation of casting and solidification behaviour axial turbo wheels to achieve fine-grained structure in the castings
Matoušek, Roman ; Ňuksa, Petr (referee) ; Roučka, Jaromír (advisor)
The aim of this thesis is to investigate the influence of the structure of castings from the nickel superalloy Inconel 713 LC using rotation and cycling by casting table. The aim is to achieve a fine-grained structure and the best mechanical properties through varying the oscillation parameters during casting crystallization. Six castings of axial turbine wheel were initially casted for the purpose of this thesis. After evaluating their macrostructure, microstructure and mechanical properties, four additional axial turbine wheels were casted in order to validate the results.
Design of a suitable shape of test bars used for HCF (high cycle fatigue) and LCF (low cycle fatigue) and elimination of internal defects for reduction of their influence
Hemala, Robert ; Šustek, Petr (referee) ; Ňuksa, Petr (advisor)
The topic of this thesis is the formation of microporosity in cast test bars of nickel-base superalloy Inconel 713LC during solidification. The theoretical part consists of nickel alloys, their macrostructure, the method of casting and crystallization of nickel-based superalloys. The second part is devoted to the design of casting conditions, the production of shell molds, the size and shape of grains, evaluation of microporosity by various available methods, comparing the influence of grain size and the proportion of microporosity on the resulting values of the mechanical tests. Experiments were carried out in cooperation with PBS Velká Bíteš and ÚST foundry department.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.